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ON PERTURBATIONS OF MATRIX PENCILS 
WITH REAL SPECTRA 

REN-CANG LI 

ABSTRACT. Perturbation bounds for the generalized eigenvalue problem of a di- 
agonalizable matrix pencil A -AB with real spectrum are developed. It is shown 
how the chordal distances between the generalized eigenvalues and the angular 
distances between the generalized eigenspaces can be bounded in terms of the 
angular distances between the matrices. The applications of these bounds to 
the spectral variations of definite pencils are conducted in such a way that extra 
attention is paid to their peculiarities so as to derive more sophisticated pertur- 
bation bounds. Our results for generalized eigenvalues are counterparts of some 
celebrated theorems for the spectral variations of Hermitian matrices such as the 
Weyl-Lidskii theorem and the Hoffman-Wielandt theorem; and those for gener- 
alized eigenspaces are counterparts of the celebrated Davis-Kahan sin 0, sin 20 
theorems for the eigenspace variations of Hermitian matrices. 

The paper consists of two parts. Part I is for generalized eigenvalue pertur- 
bations, while Part II deals with generalized eigenspace perturbations. 

1. INTRODUCTION 

The study of perturbations of eigenvalues and eigenspaces of a matrix always 
demands a great deal of attention not only by operator theorists, but also by nu- 
merical analysts. During the past few years significant advances have been made 
in the perturbation theory for the generalized eigenvalue problem Ax = ABx. 
By now, almost all the celebrated perturbation theorems for the standard eigen- 
value problem Ax = Ax have been generalized to the generalized eigenvalue 
problem by several authors, e.g., [3, 5, 6, 11-18, 21-22, 24, and 25-29]. Stew- 
art's and Sun's book [25] is a very well-written comprehensive review for both 
the development of perturbation theory for the standard eigenvalue problem 
and that for the generalized eigenvalue problem. 

As to the perturbation of eigenvalues of the standard eigenvalue problem 
Ax = Ax, we have the following well-known result due to several mathemati- 
cians. Let A and A be two n x n Hermitian matrices, and let Al, ... , An and 
Al, .., An be their eigenvalues arranged in ascending order, respectively. Then 
for any unitarily invariant norm (for definition see ?2 below), 

(1. 1 A 111 da g(Al] 
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It is worth mentioning that if the norm used in (1.1) is the Frobenius norm, 
then, and only then, (1.1) even holds for normal matrices A and A with their 
eigenvalues arranged properly [8]. 

As to the perturbation of eigenspaces of the standard eigenvalue problem 
Ax = AxL, Davis and Kahan [4] studied the case for a Hermitian matrix (opera- 
tor); their results are now known as sin 0, sin 20, tan 0, tan 20 theorems, and 
have influenced much later work on the same topic, e.g., Sun [29] and Stewart 
[24]. The case for a general matrix was studied by Stewart [22], and his method 
has a simple extension which can be used to deal with the generalized eigenvalue 
problem Ax = ABx. 

The above-mentioned results are playing important roles in the perturbation 
theory for the standard eigenvalue problem; therefore it is of great importance 
to generalize them to the generalized eigenvalue problem. 

A few generalizations of (1.1) to definite pencils were made by Stewart [24] 
and Sun [28]. Sun [29] extended the Davis and Kahan theorems [4] to definite 
pencils as well. Our generalizations in this paper are applicable not only to 
definite pencils, but also to a wider class of matrix pencils. 

The paper is organized as follows. Preliminaries necessary to our presentation 
are outlined in ?2. The main results for generalized eigenvalue perturbations 
are presented and proved in ?3. Applications to definite pencils are given in ?4. 
Section 5 contains the main results for generalized eigenspace perturbations, 
whose applications are given in ?6. We conclude our paper with miscellaneous 
remarks in ?7. 

2. PRELIMINARIES 

Throughout the paper, capital letters are for matrices, lowercase Latin letters 
for column vectors or scalars, and lowercase Greek letters for scalars; Cmxn 
denotes the set of m x n complex matrices, n c Cnxn the set of n x n unitary 
matrices, Cm = Cmxl ?Q = (C1, and Ri is the real number set. The symbol 
I(n) stands for the n x n unit matrix (also we just write I for convenience 
when no confusion arises). A > 0 (A > 0) means that A is a positive definite 
(positive semidefinite) Hermitian matrix, and A > B (A > B) means A, B 
Hermitian and A - B > 0 (A - B > 0) . The matrix A1/2 is the unique positive 
definite (semidirect) square root of A > 0, and A-1/2 = (A1/2)-1 for A > 
0. The matrices AT, AH, and A+ denote the transpose, conjugate transpose, 
and Moore-Penrose inverse of A, respectively. W(X) is the column space, 
the subspace spanned by the column vectors of X, and Px is the orthogonal 
projection onto the column space 3 (X) . It is easy to verify that 

Px = XXI, PXH = XIX. 

We will consider unitarily invariant norms III III of matrices. In this we 
follow Mirsky [20] and [25]. To say that the norm is unitarily invariant on 
cmxn means it satisfies besides the usual properties of any norm, also 

(1) IIIUAVIII = illAill for any U e Wm and V e n; 
(2) IIIAIII = IIAll2 for any A E Cmxn , rankA = 1. 

Two unitarily invariant norms used frequently are the spectral norm 11 112 and 
the Frobenius norm 11 IIF. It is well known that any unitarily invariant norm 
II IIII on Cmmxn corresponds to a symmetric gauge function F(Di, ... ,N), 

where N = min{m, n} , and vice versa. By extension according to this property, 
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we define a unitarily invariant norm I I I * I I I on Cm xn (nml < n, ni < n) consis- 
tent with the original one as HIAgII = D(al, ..., (N , 0, ..., 0) if A E Cm,xnl 
with singular values C1, ... , UN, (N1 = min{m1, n1}) . In the second half of 
this paper, very often matrices with different dimensions enter our arguments 
together, so we make the following agreements: assume we first have a matrix 
space with sufficiently large dimension M x N and with a unitarily invariant 
norm I I I I on it; then by the extension mentioned, on every matrix space with 
smaller dimension there exists the extended unitarily invariant norm denoted 
also by I I I . In this way, we have (see [25, Chapter 2, ?3]) 

(2.1) 1tHCDttI ? { C01 11II for any C E Cmxn, D E Cnxl 

Consider the pencil A - AB with A, B E Cnxn arbitrary constant matrices. 
The pencil is said to be regular if det(A - AB) 0 0. Denote by 

GI,2 = {(a, ,l) $ (0, 0): ce, fl E C} 

The pair (a, /B) E G1,2 is called a generalized eigenvalue of a regular pencil 
A - AB if det(/3A - aB) = 0. Nonzero vectors x, y E Cn are termed the 
generalized eigenvector (the right generalized eigenvector, sometimes) and the 
left generalized eigenvector corresponding to (a, ,l), respectively, if flAx = 

aBx, /lyHA = ayHB. It is easy to see that if (a, lI) E G1,2 is a generalized 
eigenvalue of A -AB, so is (4a, c,fl) for any complex number 4 $ 0. The pair 
(a, lI) E G1,2 is said to be real if there exists 0 :A 4 E C such that 4a, c,fl E 
R; for an instance, (i, i) is real. The spectrum of a regular pencil A - AB 
consists of its all generalized eigenvalues (counted according to their algebraic 
multiplicities), and is denoted by A(A, B). (And similarly, A(A) denotes the 
spectrum of the square matrix A.) 

Roughly speaking, the class of matric pencils treated here is that of diagonal- 
izable pencils with real spectra. 

Definition 2.1. A regular matrix pencil A - AB of order n is diagonalizable, or 
normalizable, if there exist invertible matrices X, Y E Cn X n such that 

Y YHAX = A diag(al, ... an), 
(2.2) yHBx = Q-diag(fli,,... /3n) 

We denote by Dg(n) the set of n x n diagonalizable pencils of order n. 

To study the perturbation of generalized eigenvalues, we need metrics on 
GI,2 and on the space of matrix pencils. Let (a, ,B), (y, 3) E GI,2. G. W. 
Stewart [21] was the first one who used the chordal metric on the Riemannian 
sphere, 

( 2.3 ) P ((a (o' ,B)) def 
|_ 

a 
-_ 

y81 

to measure the difference between the two points. We shall adopt the chordal 
metric, too. To measure the difference between two regular pencils A - AB and 
A - AB of order n, Sun [27] was the first one who realized that metrics on 
the Grassmann manifold of all n x 2n matrices having full row rank are more 
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suitable than any other natural metrics such as II(A - A, B - B) 112 . In this paper, 
we will employ 

defII Z,H ZHI2 
(2.4) d2(Z, Z) I | sin Er(Z, z)112 = I - ZZ Z11L 

|IIPZH- PZH 112, 

def H H12 
dF(Z, Z) - Ilsin8Er(Z, Z)|IF = III-Z1Z ZIZI IIF 

(2.5) 1 
= II 

where 

(2.6) Z = (A, B), Z = (A, B), 

and the angular matrix 8,(Y, Y) between two matrices Y and y C cm xq 
(1 < m < q), both having full row rank, is defined by 

(2.7) 9r(Y, ) f- arccos((yyH)-1/2ykH(IIiH)-ylyH(yyH)-1/2)-1/2 > o. 

One must note that rank Z = rankZ =n, which can be easily verified by 

the regularity of A - AB and that of A - A2B. For a detailed discussion of 

the above definitions and results, the reader is referred to [25, Chapter 2,?4]. 

In the literature, several pseudometrics on G1,2 also entered the study for 

perturbations of generalized eigenvalues at whiles (see Elsner and Lancaster 

[5], Li [11, 13]). Although these pseudometrics are not metrics, they are all 

equivalent to the chordal metric. 

The perturbation of generalized eigenspaces in Part II requires the definition 

of the angles between two subspaces with the same dimension. Let X1, X1 E 

Cnx1 (1 < I < n - 1) have full column rank. The angle between t = 9(X1) 

and J = M(X1) is defined by 

(2.8) ~~~~~~_def 
(2.8) E)Gr, I t) = diag(Ol, ..,01), 

where 01, ..., Al are the eigenvalues of Er(XH, XH). Two different choices 

of the bases of 2 and I may result in two different angular matrices, which 

differ one from the other only by a unitary similarity transformation. Hence, 

0(2', ,) is well defined. 

Lemma 2.1. Let X1, X1 C Cnxi (1 < I < n - 1) with X[HX = XkHX1 = I, 
and let 2 = R (XI) and FN = W (X1 ) . If X = (X1, X2) E /n, then for any 
unitarily invariant norm I I III we have Ifl sin E(Z, F')III = II1X2HXiII I 

For a proof of this lemma, the reader is referred to, e.g., [25, Chapter 1]. 

Lemma 2.2. Let X1, X1 c Cnxi (1 < / < n - 1) have full column rank. Suppose 
that X = (X1, X2) E Cnxn is a nonsingular matrix with 

X-1=(1H AGcnxl, 
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Set X = 9i(XI) and J = A9(X1). Then for any unitarily invariant norm 
jjjjj ? we have 

(2.9) ||| sin 0(X, I)||j 
2 I(VH2) 1/2W2HXiiX 1Xl)/ || 

Proof. We have 

I(n) X= = (= I)(X x ) =(VT/ WH2) jHHX -0. 

Let Y = (X1 (X['X1)-1/2, W2 ( HJ2)-l/2). One can verify easily with the help 
of W2Hk1 = 0 that yHy = I implies Y E ?En. Now (2.9) is a consequence of 
Lemma 2.1. o 

Lemma 2.3 (Sun [29]). Suppose Al c Cmxnl, A2 E CmXn2, m < n, + n2 and 
AIAH + A2AH = I; then there exist U E Em, V1 E Yn4 and V2 E? /2 such that 

Al= UZ1VH, A2= UX2V'2, 

where ?, = diag(al, a2, ...) and 12 = diag(Ih, /12, .**) satisfying ai > 0, 

f1i 0 O and lja12 + 1Il12 = 1 for i = 1, 2, .... 

PART I. PERTURBATION BOUNDS FOR GENERALIZED EIGENVALUES 

This part is composed of three sections. In ?3, we prove several perturbation 

theorems in each of which 11 - 112 or 11 j IIF is used. To this end, we also give a 

detailed analysis of a geometric representation of real generalized eigenvalues, 

which serves as an essential tool in our proofs, as well as a basic one in Part II 

below. The applications of the theorems in ?3 to definite pencils seem rather 

straightforward since definite pencils not only are diagonalizable but also have 

real spectra. However, extra attention has to be paid for exploiting the spe- 

ciality of definite pencils. We consider such applications in ?4. The theorems 

in this part are generalizations of some well-known perturbation theorems for 

the standard eigenvalue problem of Hermitian matrices, as is easily seen from 

Remarks 7.1-7.3 in the last section, ?7, of this paper. It is shown that under 

perturbations, the generalized eigenvalues of a diagonalizable pencil with real 

spectrum behave just like the eigenvalues of a diagonalizable matrix with real 

spectrum in the sense that there is a one-one pairing of the generalized eigen- 

values with the perturbed eigenvalues and uniform bounds for their differences 

(in the sense of the chordal metric). 

Throughout the rest of this paper, A - AB and A - f are always reserved 

for two regular matrix pencils, and Z, Z E Cnx2n are defined by (2.6). 

3. EIGENVALUE PERTURBATION OF A DIAGONALIZABLE PENCIL 

The following theorems are two of our main results. They deal with the most 

general case treated in this paper. 

Theorem 3.1. Suppose A - AB c Dg(n) and A - AB E Dg(n) both have only 
real generalized eigenvalues, and let 
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with ai, p3i, &J, fij C R, i, j = 1, 2,..., n. Assume they admit decomposi- 
tions 

HAX=A%HAXA 
(3.1a) Y X , and - 

YHBX2 , 

where X, Y, X, Y E Cn>n are nonsingular matrices, and 

(3. lb) {an) A = diag(a n,d &n), (3. 1 b) Q = diag(f,B , . . n. , aAn) S = diag(,Bl , . .,n) A 

Then there exists a permutation a of { 1, 2, ..., n} such that 

max p((aj, /3j), (&(j), AC(j))) 

X-1 ~~~~~~~~~I-1 112 (3.2) ? r~IIX2 || (~~, XI (PZH PZH) (X ) X 

< K(X)K(X)d2(Z, Z), 

where K(X) = 11X11211X-1 112 is the spectral condition number of X. 

Theorem 3.2. Under the conditions of Theorem 3.1, there exists a permutation 
T of {1, 2, ..., n} such that 

n 

(3.3) E\[p((aj, a 1j), (&T(j) a ftT(j) ))]2 

< max{11X-' 112, 1lXII2}2 max{11X-1 112, 11X112}2dF(Z, Z). 
To prove the above theorems, we need the help of results developed in ?? 3.1- 

3.2 below. 

3.1. Geometric representation of a real generalized eigenvalue. We have already 
noted that a generalized eigenvalue is invariant under a nonzero factor; hence 
for a given real (a, ,B) E G1, 2, without loss of generality, we may assume 

(3.4) ce,/fEIER, f?>0, a22+ g2=l, and a=1if3= 0. 

Thus, there is a 1-1 correspondence between the set of real generalized eigenval- 
ues and the upper half F of the unit circle, containing (1, 0) but not (-1, 0), 
in the following way. The pair (a, /3) satisfying (3.4) corresponds to a point 
z E F as shown in Figure 3.1. In the other direction, every z e F determines 
an element of G1, 2 satisfying (3.4) by its coordinates. For convenience, in the 
following, we treat z and (a, /3) equally and write z = (a, /3). The symbol 
F is always reserved for the upper half of the unit circle. 

If z, w E F correspond to (a, /3) and (y, (5), respectively, they have only 
four different relative positions. By treating z and w symmetrically, we con- 
sider the two cases described by Figures 3.2 and 3.3. 

We define 

ZW d the circular arc corresponding to angle 0, 
2 

WZ df U{the circular arc corresponding to angle Oi} 
i=1 
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FIGURE 3.1. Geometric representation: z = (a, ,B) 

FIGURE 3.2. The case 0 < 900 FIGURE 3.3. The case 0 > 900 

and define the anticlockwise angles between z and w by 

0(z, W) def 6 180?-(01 + 02) 6(W, Z) Ze-f 01 + 02 = 180- 

The notation z -< w means 6(z, w) < 900; therefore, z -< w in Figure 3.2 
and w -< z in Figure 3.3. The distance on F is given by 

d(z, w) -f p((a, fJ), (y, 8)). 

It is easy to prove that (F, d) is a complete metric space (see Proposition 3.1 
below). 

We will use the notation (zwv) to mean that the points z, w, v E F appear 
in counterclockwise cyclic order on F, as shown by Figure 3.4 (next page). Note 
that this order relation can also be described by one of (wvz) and (vzw) . We 
deal with more than three points in a similar way. 

Proposition 3.1. Let z, w be as described in Figure 3.2 or Figure 3.3; then 

p((a, /3), (y, 5)) = sin6 = sin(6l + 02). 
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FIGURE 3.4. Ordering 

Proof. Because of 0 < 0 < 180? , we have sin 0 > 0. Thus, 

sin= sin20 1 -cos20- = /1-(y+ 5)2 

=ja + /3=2 +A2 + ja2 ' 

as claimed. L 

Two connected circular arcs F1 and F2, which are separated from each 
other, have also only four different relative positions. By treating them sym- 
metrically, we consider the following two cases described by Figures 3.5 and 
3.6. To understand the connectedness of P2 in Figure 3.6, one must regard the 
two points (-1, 0) and (1, 0) as a single one. This view is much the same 
as for quotient space in topology. The separation between r, and F2 may be 
described by one of the following description. (The first "=" in (3.5a) below 
can be verified easily.) 

(i) 

(3.5a) min d(z, w) = min{ sin 01 , sin 02} }- 
zEF1 
w EF2 

where 02 = 021 + 022 in the case described by Figure 3.5. 
(ii) There exist a Er, a?> 0 a,5 >, a + < 1, such that 

(3.5b) maxd(z, a) < a and min d(w, a) > a +, 

or 

(3.5c) mind(z, a) >a+J and maxd(w, a) <a. 

Description (ii) has already been used in Sun [29] to develop perturbation 
bounds for eigenspaces of a definite pencil. We claim that the two descriptions 
are equivalent. A geometric interpretation of (3.5a) is clearly seen from Figure 
3.5 and/or Figure 3.6, whereas that of (3.5b) is clearly seen from Figure 3.7 
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FIGURE 3.5. F1 is separated FIGURE 3.6. F1 is separated 
from F2 from '72 

below, where sinb a, sin(O + 0) = a + 5, and 0 = min{01, 02}; similarly 
for (3.5c). 

It is easy to prove 

Proposition 3.2. If (3.5b) or (3.5c) holds, then (3.5a) holds with 

(3.6) > (ac + 1) - ca2 + - (c+)2- 

On the other hand, if (3.5a) holds, it is not difficult to find a E F, a > 0 
5 > 0, a + < 1 , such that (3.5b) and/or (3.5c) holds. 

Given a set K consisting of several generalized eigenvalues, hereafter we 
prefer to use the notation K c F1 (or K c F2) which means that all points in 
F corresponding to elements of K belong to F1 (or to F2). 

3.2. Auxiliary propositions. 

Proposition 3.3. Let Cai, /3i, c, fl1 e ItR and 

Cei12 + fl12 = |&jl + litl2I1 for i,1 = 1,2, 2..., n. 

FIGURE 3.7. A geometric interpretation of (3.5b) 
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Define A, Q, A, and Q by (3.lb) in terms of these numbers. Let K1 be a set 
containing k of the (ai, /3i) and K2 a set containing I of the (&j, 83j) with 
k + I > n. Assume also that F1 and F2 are as described in one of the Figures 
3.5 and 3.6. If K1 c IF and K2 c F2, or vice versa, then 

(3.7) jIQ-i1121jjAQQ- .QQAj12 > , 

where r is defined by (3.5a), and Q e C'n<n is nonsingular. 
Proof. Without loss of generality, assume that K1 = {(ai, ,fi), i = 1, 2, ... , k} 
and K2 = {(&j, /t), j = 1, 2, ..., l}, since for suitable n x n permutation 
matrices P and P, the first k diagonal elements of the diagonal matrices 
PTAP and PTf?P and the first I diagonal elements of the diagonal matrices 
PTAIP and PTQP correspond to the elements of K1 and K2 in order, respec- 
tively. Now replace Q, A, Q, A, and Q by PTQp p, TAP, pTQp pTAP 

and PT& , respectively. Having done so, we shall still have II(PTQp)-l>12 = 

11Q-1112 and 

I_TATQPPT2P T- fTiPPTQPPTAP112 = jjAQ2Q - Q2QA12 

by a simple verification. Set 

A1 = diag(al1, , Ck) A2 = diag(cek+l n...,an) 

01= diag(fil *-, Ak)) 0 2 = diag(fk+,, fi, n) 

{ A1= diag(&1,* -,) = diag(+I, fn) 
! Q1 = diag(,B1, ft ), AI) t2 = diag(f/+l, *, /3n); 

then A = diag(A1, A2), Q = diag(Q 1, 02), and A = diag(A1, A2), Q = 

diag(Q1, Q2). Partition Q as Q = (Qll Q22) with Qll E Clxk. Then 

E def A Q-QQA rA1 QII Q-Q nQ1lAI A1 Q122 - Ql Q12A2 d ef AQQ - ~iQA- (= 1Qii 
VA2Q2lD - Q2Q21A1 A2Q22Q2 - Q22Q22A2} 

so 

(3.8) iE!I > jjA1 Qi 1 Q2 - 21 Qi 1A1 112 

To estimate further a lower bound for jjEI12, we consider the case of K1 c 
F1, K2 c F2, and moreover the midpoint of arc F1 = zii coincides with 
(O, 1) (refer to Figures 3.5 or 3.6). Assume that the angle between the f-axis 
and the ray Oz or Ow is 0q, and let 0 = min{I1, 02}; then 
(3.9) 

I| jA 11j-1 = min j&jj > sin(6 + 0), ( jj IIp1I-' = min /jil > cosq$, 

I IQI 112 = max l,Bjl < cos(O + q), l jjA1j2 = max lcel <sin$. 1?1?1 1 <i<k 

Figure 3.8 shows a geometric interpretation of the inequalities in (3.9). Hence, 
it follows from (3.8) and 11Ql1112 ? 11Q-'IIy , by Corollary 2.2 of Li [17], that 

IJEJ12 > jjA1 QIIQ1112 - 11Q1 Q11A 112 

(3.10) > IIlIl1 12I-I lQiill2110 L1- - 11 111211'Q11 12IIA1 112 
> IIQI I 2(sin(O + 0)cos 0 - cos(O + k sin ) 
- IIQIj112 sin > ?IIllQ 11l 
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r~~~~~~~~2 'F2r 

FIGURE 3.8. An interpretation of the inequalities (3.9) 

which leads to the inequality (3.7) for the present case. 
Now, consider the case when the midpoint m of F7 = z7w does not co- 

incide with (0, 1), i.e., m = (;, 4) $ (0, 1). We apply a plane rotation in 
anticlockwise direction as 

def 
JAl = QA - C1 = diag(oCe, *** (k), 

def 

1 = CA, + Q o diag(tlhers, k), 
5, _ - 

( m of -A i - h _I diag((0, 1); 

tiv=eCA,y+;Qj=diag(fl, -l), 

and let 

(v = AQ1) (a1 - =-,a+ l)(, -)EFiICF 

,1 j ={j (? Q - ,B1, QA + 112 if ( Q + - >(D1 )Qi r 2 
where2 D = diag(-d1 + ,B+ , The r of otherwise, f E ls part 

It is easily verified that 
(i) the midpoint of F, is js = (0, 1); 
(ii) (3.5a) remains valid with F and r2 replaced by ser and by T2, respec- 

tively; 
(iii) (cz B)E il = I, 2, ... k , and for suitable di = 1 we have 

djfl j > O ( dj l , if f j O 0), an d thu s (d j a j, d j j ) E F2 , j 1 , 2,...,I; 

(iv) AIQIIQI - 1QIQlAI = AIQIIE21 - 921QllA, 
So from (3.9) we get 

IJEJ12 > IIAl Ql l Q - Ql QllAI 112 = 11 (DAj )Qj lQj - (DK2j)QjjlAI 112, 

where D-=diag(d, , ... , dl). The rest of our proof is a repeat of the last part 
of the foregoing proof for the case when the midpoint of F, is just (0, l) . 

The case for K, c F2, K2 c F, is clearly true by symmetry. The proof is 
completed. O1 
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Proposition 3.4. Let cei, As, 5j, /3j E R and 

j1+ 2 i2 = 16eI2 + l1jl2 = 1 for i, j = 1,2, 2..., n. 

Define A, Q, A and Q by (3. Ib) in terms of these numbers. Then there is a 
permutation a of { 1, 2, ... , n} such that 

(3.11) max p((aj1, /j), ((X(j) fta(j))) < IIQl11I211AQQ-QA 12, 
1<j?n 

where Q E Cn n is nonsingular. 
Proof. Let the (ai, fli) and (Qj, /3i) correspond to zi and ji, respectively. 
We assume also, for convenience, that all the zi and Zj are distinct, all the 
d(zi, Zj) are distinct, and all d(zi, 2j) < 1 . By a density argument, it suffices 
to prove the theorem in this special case. In fact, for the moment suppose it is 
true in this special case. Let { z (k)}k+-? and { 2zk) '+}k be two sequences falling 

into this special case for each k such that z zk)z,z(k) -+j as k -+oo. 
Then there is a permutation Uk corresponding to each {IZk) and Z(k) . Because II 
the number of different permutations of { 1, 2, ... , n} is n!, a finite number, 
{ k} +' contains a subsequence, say {uk, I+', so that 7k1 = Uk2 = . Taking 
the limit for such a subsequence, we will eventually see that the theorem is also 
true for zi and 2j. Hereafter, indices will be understood to repeat cyclically, 
e.g., Zn+1 = Z1 i 

We do not deal explicitly with the case n = 2 since it is very simple. 
We number the zi cyclically, i.e., we require (zI Z2 Zn) (cf. ?3. 1 for nota- 

tion). We define 

(3.12) d f min max d(zi, m(i) ) = max p((a1, /pi), (&aw, Pa(jw))). a 1<i<n a 1i) <i<n 

The numbering of the 2z is determined so that 

max d(z1, zi) < max d(zi, za(i)) holds for any 
(3.13) i - i,9 

S c {1, 2, .. ., n} and for any permutation uaof S7. 

Clearly, we now have j = maxl<i<n d(zi, 2i). Without loss of generality, 
assume this maximum is attained for i = 1 and (in the notation introduced in 
?3.1) zI -<s i. 

The following four claims are quite similar to Steps 1, 2, and 3 in [1, pp. 
72-73], the influence of which the author wishes to acknowledge. 

Claim 1. For any i, if Zi -< zi, then neither (zi i 21) nor (z1 Iz 21). 
This follows by applying (3.13) to the indices 1, i. 
Claim 2. If zi -< Zi, then for any j :A i, neither (zjZj?j?j) nor (zi?jzj2i) 

if 2i -< zi, then for any j #4 i, neither (2jzj2jzj) nor (2j2jzjzj). 
These follow by applying (3.13) to the indices i, j. 
Claim 3. There is a t such that d(zt+l, Zt) > j and (zi2i2tZt+?). 
As a matter of fact, for every j = 1, 2, . .. , n, had we d (zj+I, 2j) < ,then 

we could pair each 2i with zj+l and reduce the maximum distance in (3.12); 
but this contradicts the definition of q . For such t, (z1 21 tzt+?I) follows from 
an application of Claim 1 to the index t, together with the inequalities imposed. 

Claim 4. For 1 < i < t we have (z212j2t). 
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This can be easily verified in case Zt -< 2t, so in what follows we assume 
2t Zt . By Claim 3 and d(zI, 21) > d(zt, Zt), we see (Zll2tztzt+1) . Now if 
z < Zi, then unless (212i2t) we can get a contradiction to (3.13) for these two 
indices. So we need to consider the case Zi -< zi. Now (zl2i2l) is impossible 
by Claim 1; (it2jzt) is false by applying Claim 2 to the indices i, t; and 
(zt2jz1) can be ruled out, for otherwise, if (2iZiZt), then by 2i --< zi, we would 
have d(zi, 2,) > d(z1, 21) = i , a contradiction, and if (zIz,i1), our applying 
Claim 2 to the indices 1, i would also lead to a contradiction. The remaining 
alternative is (212i2t), so the verification of Claim 4 is completed. 

Now, let F, = Zt+lZ , Ki {(a>i, fli) Zi E Fl , i = t + I1, n .,n, 1} and 
let F2 = Z1 Zt, K2{(&j , fi): 2 E r2, j=1, 2, . ,t}. Obviously, we have 

min d(z, w) - d(z1, 21) = 
zEr1 
wErf2 

by (3.5a). By noting that K1 contains n - t + I of the ((xi, /3,), that K2 
contains t of the (&j , /3j), and that (n - t + 1) + t = n + 1 > n, we see that 
K1, K2, F,, and F2 satisfy the conditions of Proposition 3.3. Now applying 
this proposition leads to the inequality (3.1 1). o 

3.3. Proof of Theorem 3.1. Without loss of generality, we may assume that all 
the (ai, /3') and all the (&j, /3) satisfy (3.4). Otherwise, set 

D = diag dil a X, dnl Ce 2 

D= diag d 2/ *-- 2 &2 - 

By choosing di = ?1 and dj = ?1 suitably, and replacing Y, A, Q, and 
Y, A, ?Q by YD, DA, DQ, and YD, DA, DO, respectively, we will get a 
decomposition with the needed properties. 

It follows from (3.1) that 

AXXHBH - BXXHAH = y-HAQy-1 - Y-H2AY =0 

?4 Z+(AXXHBH - BXXHAH) = 0; 

hence 

- Z+(AXXHBH - BXXHAH) 

= Z+(AXXHBH - BXXHAH) + Z+(AXXHBH - BXXHAH) 

-Z+(A, B) (XXH XX) BH 

(XXH )(BH' 
Z+(A, B) XH -A H) 

(p p ('XXH B( RH 

Since rank Z = n, ZZ+ = I(n), premultiplying the two sides of the above 
equation by Z leads to 

(3.14a) AXXH B H-BXXHAH =-Z(P H ) (XXH X) (<H) 
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With the help of (3.1), we have 

AX--'XQ - X A 

(3.14b) =-(A, Q) (X 
- 

l (PZH _ PjH) (X )( ) def E. 

So by Proposition 3.4, we see that there exists a permutation a of { 1, 2, ... , n} 
such that 

max p((aj, /lj), (&,(j), /3a(j))) ? IV(-lX)-X'jj2jIXA-XQ - QX1-XA112 
I<j?n 

< IIXIX211(A Q)112 (|( X->(PZH PZH)( X) 2 

1l(-A 
IIX 

X-1 x~~~fk x1 

IIXI2 X- )(PZH - PH)( X) IIX-112. 

Thelast"="istruebecause II(A, 2) 112 = maxI <j < n + = 1 and 11I( )112 
i~~~~~~~~~~~ pi- 

=maxl<j<n +ajI3]= 1 byLi [11,Lemma2.1]. E 

3.4. Proof of Theorem 3.2. Without loss of generality, we assume that (3.4) 
holds for all (a i, /3i) and (&j , /bj) . By treating A - AB and A - A)B equally, 
one easily obtains the following identity from (3.14b): 

(3.15) AX- XQC -!QX- 1A = -(AX- , QX- 1)(PZH - PZH) (XA) de F . 

To complete our proof, we need 

Lemma 3.1 (Sun [30]). Let 

(3.16) X= diag(1, ..., En), ej > Ofor j = I, 2, ..., n, 

and let M, N be two n x n normal matrices with A(M) = {I I, ... , An} and 
A(N) = {Ili, . * , ln}. Then there exists a permutation r of {1, 2, ..., n} 
such that 

n 

mi?Jn c' 
- 

irj12 ? JIMIM - XNIIF.- 1 <mj<n 
e E lAj - YT(j) 2 M -NIIF- 

J=1 

Lemma 3.2. Suppose that A, Q?, A, and Q? are defined by (3. lb) with ai, I3i, 
a& J3j c R and la,12 + 1312 = I&jl2 + jl-2 = 1, i, j = 1, 2, *, n, 
and suppose X E C"nxn is nonsingular; then there exists a permutation T of 
{1, 2, ...,n} such that 

n 

(3.17) 2[P((a, /3S)I (&T(j) ,G(j)))]2 ? X- I12IAXQ - QXAIIF 

Proof. Let T = AXQ - QXA and (here i = vTT) 
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We claim that the diagonal matrices A, Q, A, and Q, E / . In fact, AAH 

(A+ M) (AH - iQH) = A2 + Q2 I and QQH J. Similarly for A and Q. 
Hence, we have 

(3.18) AXQ-4XA = 2T = AX-XAQH = 20 TO H 

Let X = UXVH be the singular value decomposition of X with U, V E W, 
and X defined by (3.16) with the singular values ej of X; then from (3.18) it 
follows that 

UH Q -UH THV. UH2 AUY - .,,AOV=2 C T 2HV 

-def -:~H:-_ - def It is easy to verify that U = UH 2 AU and V d VHAAQH V are normal 
matrices with 

A(V) = Aik = 
ice 3 f k - ,2 } 

AMU { 't =ij + i,Bj -7 12~ n} 

and 
|ek + i3k _&j + i/| 2If|i jk-& jfikl 
iCk + 13k i& +/ |1+ |ik | o|2 + |/3j|2 

So by Lemma 3.1, we have 

-Hn 

211TIF = 12 UH TH V I I F > min ej Z -(j) 2 
1I<jn j=1 

n 
- 2flX' ljp1 [p((aj, flj), (&I(j) f,(j)))]2 

0 j=l 

This establishes (3.17). U 

Now, we return to the proof of Theorem 3.2. Lemma 3.2, (3.14b) and (3.15) 
yield that there exists a permutation r of { 1, 2, ... , n} such that 

n 

(3.1 9a) 1:p(j, fj) ) (_r(j) , ft_r(j)))]2 < jjfX-IX112 IIE 112 
j=1 

n 

(3.19b) E?[p((aj' fj), (&,(j), ftr(j)))]2 <IIlX- 112 JIF 11 
j=l 

On the other hand, 
(3.20) 

E|2 + F= | F )|2 
(F~~ 

/lf 
F 

o - 
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We claim that 

(3.21 a) XH12 max{flX-1 112, flX1l2}, 

(3.21b) (-XA XHXQ ) < max{H Xf112, flXf12}- 

In fact, it is easy to verify that 

tAX-' QX-1 0 tAX-' QX-1 I- 

(*,? H A5H )(QH -AXH 

tA2X-I X-HA2 + K22X- 1X-H f2 ? 0 

(A21hHA O 2X-1XH A2XHXA2 + Q2X XQ2) 

and 

(XS2 XHA )H( XQ2 X-HA 
V-XA XHQ J -XA XHQJ 

_ (AIXHXAi + Q1XHXQ1 ? ) 
t O ~ ~ AIX-HX 1AI + QIX HX 1QI 

Thus, (3.21) follows from 

AQHQA + ?QHQQ < IIQI12(AA +?o) = flQfl2II 

AQHQA + QQHQQ < IIQl12(AA + QQ) = flQf12I, ~~~~~~~~ 2 

where Q=XH,X,X,or X-1. Now,by(3.19)-(3.21),wehave 

n 

,p(( /3) (, , ))]2 

#\j=l 

< max{f lX'XlI2, flXXlX12}1 fE|12 + fIF|12 

< max{flX-' fl 1Xfl2} maX{flX-I 112, 11X 2}2= 11PzH - PiHIIF. 

This establishes (3.3). El 

3.5. More bounds. It may be unsatisfactory to some readers that our bounds 
are expressed by means of metrics on the Grassmann manifold of all n x 2n ma- 
trices having full row rank, rather than our familiar metrics such as Il Z - Z112 - 
So in this subsection, we show how to deduce perturbation bounds containing 
only metrics such as lIZ - Zl2 of IIZ - ZIIF from our previous bounds. Also, 
we will illustrate how to establish more bounds along the lines of our proofs of 
Theorems 3.1, 3.2. 

Lemma 3.3. Let M, N c Cqxt (q > t) have full column rank; then 

PM(N - M) (NHN 1/2, P-L(N - M) (MHM)- 1/2, 

and sin 9(Q9, IV) have the same nonzero singular values, where T = (M), 
1 = ?4(N), PM = I - PM, and PN = I - P . Moreover, if their nonzero 
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singular values are a,, a2, ..., the nonzero singular values of PN - PM are 
lU1, 5, U2, U2, .. - Therefore, 

IIPN - PM12 = IIP(N - M)(NHN)<-/2 1l2 - =IIPN(N -M)(MHM)-1>2H12 

I I sin E({, -X) 112, 

-HPN - PM|F = flPjI(N - Af)(NHN) -/2 IF = flPN- (N - M)(MHM) -/2HF 

-I sin E6(X, XV) IIF. 
The reader is referred to Li [16, Lemma 3.1] for a proof of this lemma, due 

originally to Sun. 
The trivial combinations of this lemma with Theorems 3.1 a,nd 3.2 produce 

some new bounds containing jjZ - Z112 or IIZ - ZI1F immediately. To keep 
the paper reasonably short, we dispense with giving them explicitly. 

Recall that identities such as (3.14) and (3.15) play an exclusive role in our 
proofs. In a similar way, one can get the following ones. The relation 

(3.22a) AXXHBH _ BXXHAH = -(Z - Z) (XX XXH) (iH) 
yields 

(3.22b) AX1-XQ- X-XA = _YH(Z _ Z) (X ) (-A) 

By treating A - )B and A - )B equally, (3.22b) produces 

(3.23) AX-1U X - QX-4XA = yH ( _ Z (X )( Q) 

Now, one can easily prove the following theorem along the lines in the proofs 
of Theorems 3.1 and 3.2. 

Theorem 3.3. To the hypotheses of Theorem 3.1 add these: 

IC, 12 + l,12 = Ijejl2 + IfJ12 = 1, i, j 1, 2,..., n. 

Then there exist permutations a and - of { 1, 2, ..., n} such that 

max p((aj, fl/), (&(j), flaw)) 
(3.24) 1<j<nl 

< min{K(X)|XII2||YH 112, K(X) Xf211YH112}fIZZ -Z112 
and 

(3.25) jI[p((Cj, /3j), (&r(j), ft(j)))]2 

< min{K(X)IIXII2IYH 112, K(X)jXf2lYHy 112}11Z - Z1F 

It is very difficult to give a thorough comparison of (3.24) with (3.2), and of 
(3.25) with (3.3). However, we claim that the right-hand sides of (3.24) and 
(3.2) are both bounded by 

K(X)K(X) min{lZ 11 2, 1Z1 112}f11Z - 2112 
As to (3.2), according to Lemma 3.3 and (2.4), this is evident; and as to (3.24), 
it is guaranteed by 
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Lemma 3.4. Suppose that A-AB is as described in Theorem 3.1. If laJ12+ I/P2 = 

1, i = 1, 2, ... ., n, then 1yH 112 _< |Z+11211X-1112- 

Proof. We have 

Z y-H(A Q) (X 
X 

x ) : yH (A Q) (X x- + 

11 YH12 ? | ?)H2IIY11211Z+112 = LX 111211Z+112 

as required. El 

Another way of deriving perturbation bounds from the above bounds is de- 
scribed in the following subsection. 

3.6. Dual theorems. It follows from Definition 2.1 that A - AB E Dg(n) is 
equivalent to AH-XBH E Dg(n) . Moreover, if A -AB has only real generalized 
eigenvalues, so has AH - A3BH, and vice versa. A consequence of Theorem 3.1 
is: 

Theorem 3.4. Under the conditions of Theorem 3.1, there exists a permutation 
a of {1, 2, ..., n} such that 

max p((a1j, fj), (&a(j) ,5 /(j))) 

1?j?n 

< ||y|2 || y1 (PZd p- Pz)(y ) ly 112 

< K(Y)K(Y)d2(ZdH Zd, 

where 

ZdjB) d (l) 

We refer to the above theorem as the dual theorem of Theorem 3.1. In much 
the same way, we can derive theorems from other theorems such as Theorem 

3.2, etc. We omit the details here. 

Other perturbation theorems, e.g., Bauer and Fike-type theorems (Elsner and 

Sun [6], Li [11]) and Hoffman and Wielandt-type theorem (Sun [27]), for the 

generalized eigenvalue problem also have their own dual theorems just like The- 

orem 3.4 here. Readers who are interested in these are referred to Li [15]. 

4. APPLICATIONS TO DEFINITE PENCILS 

Definition 4.1 ([3, 24]). Let A, B E CnXn be Hermitian matrices. The matrix 
A - AB is said to be a definite pencil of order n, if 

def IX (4.1) c(A,B)d mm IxH(A + -B)xI > O. 
xECn 

lIX112=1 

The number c(A, B) is called the Crawford number of the definite pencil A - 
AB. We will denote by D(n) the set of all definite pencils of order n. 

Lemma 4.1. Let A - AB E D(n). Then there is a nonsingular matrix X E CfnXn 
such that 

(4.2) XHAX = A diag(al, ... , an)a XHBX - Q-diag(fi ... *, fn) . 
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In Lemma 4.1, it is easily verified that ai, /3i E IR, and by an appropriate 
choice of X, we can make la,12 + fl,12 = 1. This lemma is then well known, 
and a proof of it can be found in Stewart [241 or in [25]. 

Lemma 4.2. In Lemma 4.1, if l1a12 + tI3l12 - 1, i = 1, 2,.. , n, then 

(4.3) IIX112< ? ' IIX- 112 < c(A,1B 

This lemma is implied in Elsner and Sun [6]. 

Theorem 4.1. Suppose A - AB E D(n) and A- AB E D(n), and let 

A(A,B)={(a1,fl1), i=1,2,...,n}, 

A(A,5 Bf) = { (&j fij) , j = 1,5 2, ... ., n}, 

where ai, /fi, &j, /fj E IR, i, = 1, 2, .. , n. Then there exists a permutation 
a of{1,2,...,n} such that 

(4.4a) max p((ai, /3fj) , (&a, Afiw)) -Z d(Z, g ) (Z B ) 
1<j?5n c(A , B)c(A , B) 

(4.4b) max p((aj, /3y), (&a() fA(J))) < mi{ 112 jiZ - Z}112- 
1<j?n c(A , B)c(A , B) 

Proof. By Lemma 4.1, we know that A -AB and A -RB admit decompositions 

(4.5) {n XHAX=A, d = 
XHBX = Q a XHBX =Q? 

where X, X E Cn, n are nonsingular matrices, and A, Q, A, and Q are of 
the form (3.lb) with ai, /Bi, 5&j, /3y E JR and I aI12 + fl,1i2 = I&jl2 + l1Bjl2 - 1, 
i, j = 1, 2, ... , n. So from Theorems 3.1 and 3.3 it follows that there exists 
a permutation a of { 1, 2, .. ., n} such that 

max p((a1 , /3j), (&eW(j) , I3X(j))) < K (X) K(X)d2(Z Z), 

max p((a , /3j), (&,(j), /a(j)))) < min{K(X) llXlI , K(X) lIXI12}11Z - Z112 

The assertions (4.4a) and (4.4b) now follow from Lemma 4.2. 0l 

Analogously, Theorems 3.2 and 3.3, and Lemma 4.2, produce 

Theorem 4.2. Under the conditions of Theorem 4.1, there exists a permutation 
T of {1, 2, ..., n} such that 

n 

1[p((aj ,B f) 5(&t,B() frj))]2 

(4.6a) j =1 

< max{ 1, l Z 112} max 1, Z 1121}2d(z 
c(A, B)c(A, B) 

(n)___________7 _________________ < min{lIZ112, l11ll2} 1 - Z 
(4.6b) _____ a____ j____________j___2<_ M- IZ -Z IF 

j=1 
/ ) &W hJ))2- c(A, B)c(Ai, B) 
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Now, we are obliged to say something about the existing perturbation bounds 
for definite pencils in comparison with our bounds. Our conclusion is that our 
bounds and the bound in Stewart [24] and its improvement in Sun [28] are 
independent. Sometimes ours are much sharper than those in [24], as we will 
show, and sometimes they are weaker. The following is a slightly improved ver- 
sion, due to Li [18], of Stewart's bound [24] (see Sun [28] for another improved 
version). 

Theorem 4.3. Let A - AB E D(n) and A, B E Cn Xn be two Hermitian matrices. 
If IIZ - Z112 < c(A, B), then A - AB E D(n), and moreover, there exists a 
permutation a of { 1, 2, ... , n} such that 

(4.7) max p((a1, /3j), (&,a(j), ,f(J))) < c(A, B) 
l<j<ncA,B 

Example (Sun [28]). Let A - AB E D(n). Consider A - AB = (1 + r)(A - AB) 
with r > 0 such that 

r IIA112 + IIBII2 r IIA112 + hIBI12 

c(A, B) < c(A, B) 

Obviously A- AB E D(n) and A(A, B) = A(A, B), and the right-hand side of 

(4.4a) is 0, whereas the right-hand side of (4.7) is r IlAH2 + IlB12 /c(A, B) 1 . 
This example shows that sometimes (4.4a) is much sharper than (4.7) (and than 
(4.4b) as well). The improved bound of [24] from Sun [28] also provides a best 
estimate for this example, just like ours. 

The following observations, on the other hand, show that sometimes (4.4a) 
may be weaker than (4.7). By Lemma 3.3 and (2.4), 

(4.8) d2(Z, Z) < min{l(ZZHl)-/2112, ll(ZZH<,l/2112}1Z - 

and 

11(ZZH<)/1121= - mi (xHA2X + xHB2x) 

(4.9a) IXI121= 

> min IxHAx + - lxHBxl2 = c(A, B), 
xEC' 

lix 112=1 

(4.9b) 11(ZZH)-l/211-l > c(A, B). 

The ">" in the inequality (4.9a) holds because y2 is a convex function. As a 
matter of fact, suppose A - U diag(AL, .I. ., ,n)UH, U E En . (This is possible, 
since A is Hermitian.) We write Ux = (4I, ...n, h)T; then 

n n 2 

XHA2X = S 2i2 > E 1? - (XHAx)2 
i=l1= 
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With the help of (4.8) and (4.9), we weaken the inequality (4.4a) by 

max p((aj, /3j), (&a(j), AC(j))) 
1<j?n 

(4.10) 1 Z112112 112 - Z112 

c(A, B)c(A, B) max{c(A, B), c(A, B)} 

Now a rough comparison of (4.4a) with (4.7) may be done through the compar- 
ison of (4.10) with (4.7). First, we see that the difference between 

IIZ Z112 and IIZ - Z112 
c(A, B) max{c(A, B), c(A, B)} 

is negligible if A- AB is close enough to A - AB; hence we ignore their contri- 
butions, since we are interested only in a rough comparison. Second, we note 
that the factor 

(4.1 1) IIZI1211ZI12 
c(A, B)c(A, B) 

appearing in the right-hand side of (4.10) is, generally, greater than 1. This 
is because IIZIJ2 = J(ZZH)1/2112 ? II(ZZH)-1/2jl-1 > c(A, B) and 1Z112 ? ~~~~~~~~~ - 

c(A, B) for the same reason. Thus, this factor allows us to conclude that (4.4a) 
is less sharp, especially when (4.1 1) is very large. 

Also, it is very troublesome to compare other bounds, e.g., (4.4b) with (4.4a), 
(4.4b) with (4.10), and (4.4b) with (4.7), although a rough comparison can be 
made in a way similar as above. 

PART II. PERTURBATION BOUNDS FOR GENERALIZED EIGENSPACES 

In this part, we prove several sin 0 and sin 20 theorems for diagonalizable 
pencils with real spectra in ?5. Then in ?6, we apply them to definite pen- 
cils, which lead to more perturbation bounds for definite pencils. This part is 
related to Davis and Kahan [4] and Sun [29]. All theorems in this part are gener- 
alizations of well-known perturbation theorems [4] for the standard eigenvalue 
problem of Hermitian matrices. 

5. EIGENSPACE PERTURBATION OF A DIAGONALIZABLE PENCIL 

Suppose that A - AB e Dg(n) and A B- LB c Dg(n) admit decompositions 

(5. 1 a) { YHAX and {HAxA 
yHBXwe yHBXQ, 

where 
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(5. lb) 
X= (XI, X2), X=(X1, X2), Y= (YI, Y2), Y=(Y1, Y2), 

1 ( ~W2H )W iH )H 2 S2H) 

XI1 , l Y, , J'V1W, WI , S1, s1 E Cnxl, 
def A A-diag(al, ... , an ) = diag(Al, A2), 

(5.2a) Q= diag(,Bl, def.... ,wn-iag(Ql I Q2), 

A1, Ql E CJxl, A2, Q2 E C(n 

A=diag(dk, ., &Xn)Lefdiag(Al 1 A2) 
(5.2b) ~~~~~~~~~~def 
(5.2b) < ~Q = diag(f,Bl , ,Bn)-=diag(C21, Q22), 

t 1, Q C1 E Clxl, A2, C22 E <C(n-1)x(n-1). 

It is easy to see that two subspaces spanned by the first / column vectors of X 
and Y are a (right) eigenspace (left) eigenspace of A - AB corresponding to 
(ai, ,8i), i= 1, 2, ... 1, respectively. Set 

5.3) lw = (XI), 11r = (XI).S 

5.1. sin 0 theorems. The following theorem is one of our main results in this 
part. 

Theorem 5.1. Suppose A - AB E Dg (n) and A - B E Dg (n) both have only 
real generalized eigenvalues and admit decompositions (5.1)-(5.2). Let K1 = 
{(ai, fli), i = 1, 2, ..., 1}, K2 = {(&j, /3i), j = I + 1, ..., n}. Assume that 
F1 and F2 are as described by one of Figures 3.5 and 3.6, and q is defined by 
(3.5a). If K1 c F1 and K2 C F2, or vice versa, then for any unitarily invariant 
norm 111111 there holds 

1 sin E(,r, rl) 
(5.4) < jjXi jI2HJ'J'1 I W2 ( WH )(PZH PZH)( X ) 

Remark 5.1. From (5.4) it follows in a straightforward manner that 
(5.4') 

111 sin Et )()II 

{ K(XI)K(W2) W20 ) PH X1o ) 
< j U 1hlt H)~~(PZH - PzH) Ji 

K(X)K ) 2 0 (PZH -0 )jH ( )02 

where X10 - XI(XHX1) 1/2, W20 = W2(W2HW2> /2, and i1(X2) = IIXiII2IIXlII2 
is the spectral condition number of X1, and similarly for K (W2), etc. 
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Proof of Theorem 5.1. Without loss of generality, assume that (3.4) holds for 
all the (ai, /3i) and (&j, /3j); otherwise, let 

D-=diag di/ Ce?, 12 + If,B 12 1.. dnl Ilan 12 + I fln 12) , 

D = diag (di//|g 112 + Ift,12, ..,dn /ln 12 + I fn 12 ) 

and choose di, dj with Idil = 1= appropriately, so that the decomposi- 
tions obtained by replacing Y, A, Q, and Y, A, Q in (5.1)-(5.2) by YDH, 
DA, DQ, and YDH DA, DQ?, have the desired property. 

Now (3.14) is obviously true. In what follows, we present another proof of 
(3.14b), which has the advantage that it is valid even for complex generalized 
eigenvalues, although all generalized eigenvalues encountered here are real. 

From (5.1) it follows that 

AXyYHB - BXYHA - y-HAQX-l _ y-HQAX-l =0 
=: Z+(AXYHB - BXYHA) = 0; 

hence 
- Z+j(AXYHB-BXYHA) 

_-Z+(AXYHB -_BXYHA) + Z+(AXYHB - BXYHA) 

=Z+(A, B) (XY xyH)( -A )-Z+(A B) XyH )(-A) 

=(PZH-PZH) ( XYH) (-A). 
Since rankZ = n, ZZ+ = I(n), premultiplying the two sides of the above 
equation by Z leads to 

(5.5a) AXYHB - BXYHA = -Z(PzH - pZ) (XYH XH) (x) 
Substituting (5.1) into this equation, we get 

AX1lXQ - Q2X-XA 
(5.5b) - (A Q)(x kl>PZH-PH)(x )(Q) 

This is nothing but (3.14b). On the other hand, by (5.lb) and (5.2), the right- 
hand side is 

AX1-XQ - 6X1-XA 

- (AL wjHX _? - ,L WHX1AL Al WHX2Q2 - Q WL X2A2 

A2W2HXIQL - Q2W2HXlAl A2 W2HX2 Q2- 02 W2 X2A2 

So by (5.5b), we have 
(5.6) 

l f2XI __ I - 62W2X__ 
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Now we bound 1H11A2W2HXiQi - C22W2HXjAIII from below. This can be 
done in the same way as we did in the proof of Proposition 3.3. In fact, we 
have (refer to (3.10) for the first ">") 

IIIEIIj > iW2HXi 11 sin 0 

(57) = Il(JH W2) l2( W2HHW )1/2W X (XHX) -1/2(XHX ) 1/21 11 sin 0 
2 ||W W2) l/2 (2ll I2XolllX 2l /2)1 

= U W2+ 1fl lXl j12-jjl sine((2(j, t)N)Ht. 

Besides Lemma 2.2, we have also employed the fact that jl(J'J/lW2)-1/2jjp l 
equals the smallest singular value of W2, which is J12 j2ll 1, and similarly for 

On the other hand, from (5.6) it follows that 

|E||< (H 121H1 ) (PZH-PZH) (X X1)1 

since A2 + Q2 = I, AX + Q2 = I. This inequality together with (5.7) leads to 
(5.4). E1 

For LF, the inequality (5.4) holds even under a weaker condition imposed 
on the separation of Kw and K2, and holds for complex generalized eigenvalues, 
as indicated in the following theorem. 

1~ ~ ~ ~ ~ 2 

Theorem 5.2. Suppose A - fB e Dg(n) and Af- lB e Dg(n) admit the decom- 
positions (5.1l )-(5.2), but it is not necessary for them to have only real generalized 
eigenvalues. Set 

t1= lmmi p((ati,/3i), (o&1,/3)). 

IIIEIII~~+ < W < n PH-PH 

If 5 > 0, then (5.4) holds for the unitarily invariant norm lIF 
Proof. We have argued that (5.5b) is true even for complex generalized eigen- 
values; so is (5.6), from which it follows (denote m.2HX = (wiy) e (n1)xl 
that 

flEfl2 = flA2W2HX1Q1 -Q2iW2HXlAfl2 
n-I / 

E Z Zup1poe h -B E Dgn 2 > Z |wijB 2 = Dg 2n adHit te dF 
j=l i=l iij 

eievaus Se 

implying 

||E||F ? t5fl W2?f1 flXjl 12 fl sin ( , XIF 
as claimed. LI 

The upper bounds in Theorems 5.1 and 5.2 contain PZH - rather than 
Z - Z explicitly. However, the following theorems, obtained along the lines of 
the proofs of Theorem 5.h and Theorem 5.2, have a different feature. 
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Theorem 5.3. To the hypotheses of Theorem 5.1 add these: 

I12 + 13l=12 =II2 + 12=1, i, j = 1, 2,..., n. 

Then 

(5.8) | IsinE(t, ,)I < y 2H(Z Z) X , 

Remark 5.2. More bounds may be deduced from (5.8) by using the following 
elementary inequalities: IlXjl112 < IIX-'l2 , 11 fV2+112 < II11 2, 5fl2II2 < IYI2 
and 

Y7H ( X X) = (A Q) Y-H = 2H(22H)(Z 

(5.9) x Y1 ?flflIZZZ 2 
=* I| Y112 < ||X 1 112 IIZH('k'H,-1 112 

As an example, one gets from (5.8) 

Proof of Theorem 5.3. By the proof of Theorem 5.1, it suffices to note that (refer 
to (3.22) and (3.23)) 

(5.10Oa) A-xyH B _BXyHA = (2 - Z)XyH )B) 

(5.10Ob) ;kA-,k-Xt - QX-.k-XA = kH(,k _ Z) (X ) 

which, just like (5.5), are both true, even for complex generalized eigenval- 
ues. El 

Theorem 5.4. To the hypotheses of Theorem 5.2 add these: 

la,1l2 + 1p,12 = I&jI12 + IftjI2 = I , i, j =15 25 ... ., n . 

Then (5.8) holds for the unitarily invariant norm III = Il III F. 

5.2. sin 20 theorem. As pointed out by Davis and Kahan [4], sin 2OQ(i, Z) 
is also a measure of the difference between the subspaces M(XI) and (X1). 

Theorem 5.5. Suppose A - AB E Dg(n) and A - A]B E Dg(n) both have only 
real generalized eigenvalues and admit decompositions (5.1)-(5.2) with 

Iaf,12 + 1Il2 = jI2 + 1fjI2 = 1, i, j = 1, 2, ... , n. 

Let K1 = {(sk,/i), i= 1, 2, ...,l}, K2 = {(a1, 5p), j -I+ 1, ..., n} 
Assume that F, and F2 are described by one of the Figures 3.5 and 3.6, and 
q is defined by (3.5a). If K1 c F1 and K2 c F2, or vice versa, then for any 
unitarily invariant norm *, there holds 

III sin2E(3, D)HII - 2w(o|X111211WJ112111 sinE(t, ,)11I2 

(5.11) 
KEc(X)3<K(X)[l+K(Y)K(X)]flXfl2flYfl2 

where = - (WHWlH )1/2WfHW2(W2HW2)1/2fl2- 
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Remark 5.3. More bounds may be deduced from (5.11) by using (5.9) and the 
following elementary inequalities: 

ILXi 112 < lAX112, fl WI 112 < ||X7 112 =* IlXI 1l2l Wl l112 < K(X) 

HI(WHW <I/2WHW(WHW <l/2f?1 1|Ww)- 2H2 (W2 w2) /112 < 1 

II <1f2 ?l 11XV 1211ZH(ZZH)- 112 ||Y- 112 < ILXI1211ZIL2 

since 

( X ) ( QH) 

Proof of Theorem 5.5. Set 

(5.12a) ~ 
R = X 

I(n-1) ) 

- 
(XI, -X2) WH) 

= X1 WHX2W2 

(5.12b) (= -I(l) ) Y' = (Y , -Y2)Y-, 

from which we have 

(5.13) R = R2 = I(n) flRxfl2 < K(X), flRyfl2 < K(Y). 

It follows from (5.1)-(5.2) that 

YH(A + RH(A- A)Rx)X 

=A+ (Y1, y2)H (A-A)(X1, -X2) 

= (Y1, -~~Y2)HA(X1, -X2) (since (Y1, Y)HA(X, -X2) = A) 

= (Ryy)HY-HAX,-RxX 

which implies 

A dfA + RyH(A-A)Rx = R Y-HAXlRx. 

Similarly, we define B = B + RH(B B)Rx = RyHY-HAX-lRx . We see easily ~~~~~~~ y 

that A - AB E Dg(n) . Hence by our hypotheses, the conditions of Theorem 5.3 

are satisfied for the pencils A h- B and A - AB. Let X def R -X = RXk 

(Xi, X2), where XI E Cnxl, and let ' = R(XI). By Lemma 2.2, we have 

(5.14) )sin 9Qr, F1)II 2 2 I(2 X2 , 1 X x 

We attempt now to obtain an upper bound for the right-hand side of equation 

(5.14). Using X1 = RxkXI, (5.12a), and 

W2(XWH + X2WW2) = V2Hxx-1X 

= = W2 HX2 W2 = -W2 jH WI'x1, 

we get 

(5.15) W2HXi = W2HRxXk = W2H (XI WIH - X2W2HJI = 2W2 X IWJIX1. 
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On the other hand, (XI(XjXi)-1/2, W2(W2HJ E2)-l/2) e n,; therefore, 

WI = [XI(XH'W1)-1XH + W2(W?HW2 'W?H]Wi 

=XI(X[fXl)l + W2(W2HW2< W?IW1 (since X[IWW =1). 

Substituting the above equation into (5.15), we obtain 

(5.16) W2H'IH = 2W2HXI(XH XI) lXH + 2W2HXl WIHW2(W2HW2) W2 IXl . 

Then, combining (5.14), (5.16) and (5.13) leads to 

I sin EQ(, Fj)IH 
= II(W2 W2l) /W2HX (X[IRRx RxX)-/21H 

? (WHI(J,-HJ,2) 1/2JV2HXi(XXl/I) /2111 RI1 I 

= lR | 21 || 20 XI OXlHf_(I + V2HO XI WIH W20 W2 lol|| 2=10 

hence, 
(5.17) 

K(X)III sinE)(, F)I 

> 2III||2V8XIoXHoIII l 

-21 1 W20HXIOl I |I11(XH X1) 1/2 11|2 (WIH WI 1/2 11 211WIHO W20112 IIIW2H-l0 1 1 1, 

where XIo = XI(XHXI) -1/2, WIo = W(WjHWI) -1/2, W20 = W2(W- HW2) 1/2 

= X1(X['X1)-'/2, and J2o = W2(W2HW2)-1/2. The following fact is used 
for the first">": for any matrix M with suitable dimension, 

XfHR 
H 

RX iC < IIRxII2X['XI 
I (x 2XX1 1 >|R|22XHl 

M(XIHR H RxX< )-IMH ? IIRXII-2M(XkHfCI)-IMH 

I IgMJXHR H RxXk-1/2 III > ggRx 11 
- 

1 1M(XkHkI) - 1/21 1 . 

Now, we are able to embed sin 2EQ(%, F) into the right-hand side of (5.17). 
It is easy to verify that (X1o, W20), (X10, W20) are unitary matrices, and so is 

X W2W W0 W20 (W20 ) 

therefore, from Lemma 2.3 it follows that there exist unitary matrices with 
suitable dimensions U, V1, V2, V, U1, and U2 such that 

(5.18) X[oX1o = UTV1H, = UXVH, 

XfoX1 =VTU[H, XH W20 = VyTUfH, 

where T = diag(y1, Y2, ...), X = diag(al, q2, ...) Y = cos Oi, i = sin Oi for 
i = 1, 2, ...,and 6 > 01 > 02 > 0. From (5.18) we get II X[HW2011l = 

IIIXiII = IIIX1H0W220II. Therefore, 

(5.19) ||| sin EQ(r , FN)II = IIIXiJ0V2oI = IIXjJ0 20111, 
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and 

(5.20) 21|tW20XIoX[oXIot = 21V1T1XV2HH = |diag(sin201, sin 202, ...) 

( Il0 sin2E9('I, F) I . 

On the other hand, Theorem 5.3 tells us that (see Remark 5.2) 
(5.21) 

sin E(V ) 

?-K(RxX)fIX11211Y112 II(A - A, B-B)lII 

< -KK(X)2K(X)fXfII2lYII2 (Z-Z)-RH_(ZZ) (Rx ) 

1 2 RyI2fRxf2)IZ 
< -K(X) K(X)AkI7l2flYfI2(l + -ZIH 

11 2 K()()fXlf - 

< -K(X) K(A7)[1 + K(X)K(Y)]IXfl2llYfl2HIZ -111. 

Now substituting (5.19), (5.20), and (5.21) into (5.17) leads to (5.11). El 

The following theorem indicates that the conditions of Theorem 5.5 can be 
weakened for 11 IIF. 
Theorem 5.6. Suppose A - AB E Dg(n) and A- 

' 
E Dg(n) admit decompo- 

sitions (5.1)-(5.2) with 

laei12 + 138h2 = I&jI2 + L6jI2 = 1, i, j = 1, 2, ...,n. 

(It is not necessary for them to have only real generalized eigenvalues.) Set 

t1= lmin p((&i, fi), (&j, f3)) 
1<1< Il??jn 

If C > O, then (5.1 1) holds with 111 I 111 = II C HIF 

A proof of Theorem 5.6 can be given along the lines of our proof of Theorem 
5.5, with the help of Theorem 5.4. 

5.3. Dual theorems. What we studied above is for the perturbation of a (right) 
eigenspace. As its dual case, we may study the perturbation of a left eigenspace 
by simply applying the above results to AH - ABH. We omit the details here. 

6. APPLICATIONS TO DEFINITE PENCILS 

Suppose A - AB E D(n) and A- AB E D(n) admit the decompositions 

XHAX=A r XHAX=A, 
(6.1a) i and 

XHBX - Q, XHBX, 

where A, , .., ,fl, ... are of the form (5.2), 

f = (X1, X2), X=(X1, X2), XI, X1 E Cnx, 

(6.1b) w I 
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Theorem 6.1. Besides the hypotheses of Theorem 5.1, we assume further that 
A - AB E D(n) and A - AB E D(n) and that they admit the decompositions 
(6. 1). Then for any unitarily invariant norm 1 Ia 1, there holds 

H lsin O(t~)IH ? flZf1211Z112 1 
(6.2a) c(A, B)c(A, B) 1 

||( W20 WH) (PZH PZH) QY XIO ) 

where 

(6.3) 10XI = XI(XH'X1)-1/2 W20- W2(JH2H '2) 

If, in addition, la,12 + I3,B12 = I&j 2 + /3tj12 
- 1, i, j = 1, 2,..., n, then 

H11 sin (, tN)IH ? HIIZI12 1 

(6.2b) C(A, B)C(A, B) 1 

||(WH H) (PZH PZHj) X)I 

Here, X and J are as defined in (5.3). 
Proof. From Theorem 5. 1, Remark 5. 1, and 

(6.4) IIX1 112 < IIX-l2 1*W2+112 <- 11X112, 

together with Lemma 4.2, one gets the inequalities (6.2). n1 
Theorem 6.2. Besides the hypotheses of Theorem 5.2, we assume further that 
A - AB E D(n) and A - AB E D(n) and that they admit the decompositions 
(6.1). Then (6.2) holds for the unitarily invariant norm 11 IIF . 

Notice that one of the hypotheses of Theorem 5.2 which allows the pencils 
considered to have complex generalized eigenvalues is immaterial now, because 
definite pencils always have only real generalized eigenvalues. Therefore, the 
only difference between the conditions of Theorem 6.2, as well as Theorems 
6.5 and 6.6 below, and those of other theorems in this section is the separation 
hypothesis imposed on the subsets of generalized eigenvalues of the two pencils. 

Theorem 6.3. To the hypotheses of the first part of Theorem 6.1 add these: 

lai12 + 1pl12 _ Iekj2 + ?I3jI2= 1, i, j = 1, 2, ...,n. 

Then for any unitarily invariant norm III, we have 
(6.5) 

1IZ112 I kH(2 _Z)(XI 
II sin E c(A,B,)c(A,B) ?/ 2, x I1J< 

Proof. The assertion (6.5) is a consequence of Theorem 5.3, (6.4), and Lemma 
4.2. El 

Theorem 6.4. Under the conditions described in the first part of Theorem 6.1, we 
have, for any unitarily invariant norm 
(6.6) 

|)Zl12 1 H Z) III sn8(~ 
)II~ c(A, B)c(A I B) q1 

20 10 
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where X1O is defined by (6.3), and 

(6.7) X2 -X2(X2 X2)/. 
Proof. Without loss of generality, we may assume that lac12 + I3l,12 = I&jI2 + 

-l2 = 1, i, j = 1, 2, ..., n. Since postmultiplying X, X by nonsingular 
matrices does not change the singular values of sin (Z, Fj), we have that 
(6.5) holds. Now, combining (6.5) with 

Xk2H(A - A, B- B) (X' HX) D I 'X2XH2 X21X(Z-Z) ( xio )||| 

and Lemma 4.2 leads to (6.6). O 

Similarly, we have 

Theorem 6.5. To the hypotheses of Theorem 6.2 add these: 

la12 + Ifl22 = IjI2 + j= 1, 1 1= 12 ... , n. 

Then (6.5) holds for the unitarily invariant norm 11 IIF . 
Theorem 6.6. Under the conditions of Theorem 6.2, the estimate (6.6) holdsfor 
the unitarily invariant norm 11 IIF . 
Remark 6.1. We omit the statement of the sin 20 theorem for definite pencils 
to save space. 

Now, we give a simple comparison of our bounds with those in Sun [29]. We 
have already noted the, description (3.5b) and (3.5c), adopted by [29], for the 
separation of generalized eigenvalues, and have proved that they are equivalent 
to the description (3.5a). By adopting (3.5a) instead of (3.5b) and/or (3.5c), 
the main result of Sun [29] may be restated as: under the conditions of thefirst 
part of Theorem 6.1, there holds, for any unitarily invariant norm I I I 

II sinE(3(t, F9)HII < q. * lZ112 

(6.8) 1c(A, B)c(A, B) 

- ((A-A)X10, (B - B)X10) I llSun, 

where the constant q satisfies 1 < q < V'_, X10 is as defined in (6.3), and 

H((A- A)X10, (B - B)Xo)IIISun df (IIIVA A)X1oIII2 ? 11(V-B)X 1 - 

Here the subscript Sun is used to distinguish the norm from 

|II2HA- A, B -B) (Xl X )|| 

It is difficult to compare (6.8) with (6.2a) in a straightforward way. However, 
two indirect methods may be employed. One is to weaken (6.2a) just like we 
did at the end of ?4. This leads us to the impression that (6.2a) is less sharp 
than (6.8). The other is to construct examples. Here is an example from Sun 
[28]. Let A - AB E D(n). Consider A- AB = (1 + r)(A - AB) with r > 0 
such that the right-hand side of (6.8) is less than 1 but almost 1. We assume 
that the spectrum of A - AB consists of two parts with suitable properties such 
that (6.8) and (6.2a) hold. It is easy to see that the right-hand side of (6.2a) is 
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0, whereas the right-hand side of (6.8) is approximately 1. This example shows 
that sometimes (6.2a) is much sharper than (6.8). 

As to (6.8) and (6.6), we may roughly regard them to differ only by a constant 
factor. To see this, we weaken (6.4) somewhat by writing 

fsin9EQXI ij9)f < IZH12 
(6.9) 111 sin (3(t t ) 1 I I-c(A, B)c(A, B) 

||(A -A, B -B)(l X)|| 

Ignoring the constant q > 1, we note that I I11 GI ? I 11G IIGsIuIIn < V21I11GIII, 

where G 'Le ((A - A)X10 (B - B)X1O). So (6.6) is sharper1. 

7. CONCLUDING REMARKS 

Starting with our theorems in both parts above, we can deduce some known 
results in the perturbation theory for the standard eigenvalue problem. 

7.1. Suppose A, A E Cn x>n are both similar to Hermitian matrices, i.e., there 
exist nonsingular matrices X, X E C<nxn such that 

(7.1) X-1AX = diag(&1, . n. ,&,e), X-1AX = diag(al, ... n) 

so that A(A) = {ai, i = 1,2, ... , n}, A() = {&j, j = 1, 2, ... , n} with all 
the ai, &Cj E R. For t > 0 sufficiently large, both A - AtI and A - )tI belong 
to Dg(n), and moreover, we have A(A, tI) = {(ai t), i = 1, 2, ..., n} and 
A(A, tI) = {(&j, t), j = 1, 2, ..., n}. Set Zt = (A, tI) and Zt = (A, tI). 
From Theorem 3.1 it follows that there exists a fixed permutation a and a 
sequence of increasing positive numbers tl, t2, ... tending to +?0 such that 
p((aj? tj), (&(j) ti)) < K(X)K(X)d2(Zt, , Zti) for i = 1, 2, ..., i.e., 

Iaj - &a(j)Iti 

jay+ ti2/taj i 

~AH\ 
< K (X)K (X) tA (AAH + tI)-1 (A, tjI) 

-(jtI) (AA + tiI)- (A, tiI) 2 

Multiplying the two sides by ti and letting i tend to +o0 gives 

miax Iai - &,j)I ?K(X)K(X)(AA 
HA )2 

(7.2a) I<j?n A - A - 
2 

= K(X)K(X)IIA -A1l2. 

Now if A is Hermitian, then X E EKn; thus (7.2a) becomes 

(7.2b) max laj - aa(j)Il < K(X)IIA - A112 

1It is worth mentioning that Sun's proof of (6.8) can be refined to get (6.9). 
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This is a theorem of Kahan [9]. If, in addition, A is also Hermitian, i.e., 
X E W, then (7.2a) becomes 

(7.2c) max cJa I- a(j)I < IIA - A12 

This is nothing but the celebrated Weyl-Lidskii theorem. Inequaiities (7.2) can 
also be obtained by similar arguments starting with Theorem 3.4 instead of 
Theorem 3.1. 

7.2. The Weyl-Lidskii theorem is also a consequence of Theorem 4.1. Let 
A, AL E Cn"n be two Hermitian matrices with A(A) = {cei, i = 1, 2, ..., n}, 
A(A) = {c&x, j = 1, 2, ..., n}, with all the ai, &j E R. For t > 0 suf- 
ficiently large, both A - AtI and A - ZtI belong to D(n), and moreover, 
we have A(A, tI) = {(cei, t), i - 1, 2, ..., n} and .(A, tI) = {(&j, t), 
j = 1, 2, ..., n}. Let Zt, Zt be as above. By Theorem 4.1 it follows that 
there exists a fixed permutation c and a sequence of increasing positive num- 
bers tl, t2, ... tending to +oo such that 

p((axj ti) , (&Ua(j) X ti)) <_ (A -tI-Atd2(Ztl I Ztl)I 

for i = 1, 2 . Note that all the HZtfl112, 1HZt, l2, c(A, ti ) , c(A, tiI) can 
grow like ti (1 + O(1 /t1)) . This shows 

1lZt211HZt2 = 1 + O( 
c(A, tiI)c(A, tjI) ti 

Now repeating the arguments similar to those in ?7.1, we finally get (7.2c). 

7.3. Sun [30] proved that if A, A E Cn, n are both similar to normal matrices, 
i.e., formally we have (7.1) but with cei, cej E C , then there is a permutation T 
of {1, 2, ..n} such that 

n 

S Ce - cT(j) 12 < K(X)K(X)fIA- A|F. 
j=1 

This is, obviously, a generalization of (1.1) to the case of the Frobenius norm. 
Sun [27] also proved that if A - AB and A - AB are two normal pencils 
with A(A, B) = {(cei, /i), i = 1, 2, ..., n} and A(A, B) = {(&j,/b), j' = 

1, 2, ..., n} (it is not necessary that all (oai, /hi), (cx, /j) be real), then 

n 
(7.3) -[(6j j,(t() B())) 12 < dF (ZZ 

Therefore, it may be of interest to establish an inequality like (7.3) for diago- 
nalizable pencils. Our inequality (3.3) is developed for this purpose. However, 
the right side of (3.3) does not have the desired form. We suspect that (3.3) 
might be true with its right-hand replaced by K(X)K(X)dF(Z, Z), but we are 
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unable to prove it. Liu [19] attempted to investigate this problem, but was not 
successful. 

7.4. An interesting result on the Hadamard product of matrices can be deduced 
from Proposition 3.4. The conclusion is as follows. 

Proposition. Let ai, /i3, ( dj, /j E R1 laiC12 + I/i 12 = &jl 2 + Ifj -l 1, for all 
i, 1, 2, ..., n; then 

min IJU o G112= min max p((ai, AI), (&y(j), E8aU))), 
U E Z/, a 1<j?5n 

where G df (gi}) d f - ,8i%) E C:><', and "o" denotes the Hadamard 
product, i.e., U o G = (uijgij). 

In fact, U o G = AUQ - QUA, where A, Q, A, and Q are of the form 
(3. lb). It is easy to see from Proposition 3.4 that 

min 11 U o Gl2 > min max p((at, As), (&a(j), / a w))) U E Z/, a 1?j?n 

On the other hand, the same obviously holds with "> "reversed, since permu- 
tation matrices are also unitary matrices. 

7.5. Also, by a special limiting procedure like that in ??7.1 and 7.2, some 
known perturbation results for eigenspaces, such as the Davis-Kahan sin 0 and 
sin 20 theorems on the standard eigenvalue problem, can be deduced from our 
results in Part II. We omit the details here. 

7.6. The most essential hypothesis throughout this paper is that matrix pencils 
considered are, generally, required to have only real generalized eigenvalues. 
However, it is worth mentioning that in a few theorems in Part II involving the 
Frobenius norm, this hypothesis can be removed. The reader is referred to Sun 
[29] for details. 

7.7. Readers may wonder about the ad hoc example A - AB (unperturbed) 
and (1 + r)A - A(1 + r)B (perturbed), used in ??4 and 6 for our comparisons. 
Our choosing this example is no accident. In fact, according to Sun's useful 
suggestion that all n x n regular matrix pencils be embedded into the Grassmann 
manifold of all n x 2n matrices having full row rank, A - AB and (1 + r)A - 
A(1 + r)B represent the same point on the manifold. Therefore, all bounds 
related to metrics on it (or PZH -P, in Part II) should yield the best estimation, 
i.e., 0, for this kind of perturbations. 

7.8. This paper deals with generalizations of well-known perturbation results 
for eigenvalues and eigenspaces of the standard eigenvalue problem. In Li [1 6], 
some known results for standard singular value variations are successfully gen- 
eralized to perturbations of the generalized singular value problem. 
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